The electron configuration of ununennium

Aran David Stubbs

Main Article

The electron configuration of the first 118 elements has been observed to follow a simple pattern leading to some assumptions about the configuration of the next few elements. Each time a p sub-shell is completed, the s sub-shell just beyond is started. Element 118 has a complete 7 p sub-shell, and no 8 s electrons, so 119 (ununennium) is assumed to have 18 s electron. While that is a possibility, another configuration is also possible.

The standard pattern is: 1s; 2s; 2p, 3s; 3p, 4s; 3d, 4p, 5s; 4d, 5p, 6s; 4f, 5d, 6p, 7s; 5f, 6d, $7 \mathrm{p}, 8 \mathrm{~s}$. The next group if the pattern holds would be: $5 \mathrm{~g}, 6 \mathrm{f}, 7 \mathrm{~d}, 8 \mathrm{p}, 9 \mathrm{~s}$. However, it is necessary to look at the underlying cause of the pattern. Treating the electrons as being in elliptical orbits with eccentricity rising in steps is one view of the cause. Here, the next sub-shell filled is the one with a vacancy whose high point is lower than any other sub-shell with a vacancy. This is the sequence: $1 ; 2 ; 2-x: 2+x, 3 ; 3-x: 3+x, 4 ; 3-2 x: 3+2 x$, 4-x:4+x, 5; 4-2x:4+2x, 5-x:5+x, 6; 4-3x:4+3x, 5-2x:5+2x, 6-x:6+x, 7; 5-3x:5+3x, 62x:6+2x, 7-x:7+x, 8; 5-4x:5+4x, ...

From this view, a step size can be approximated. Since 2 p fills after 2 s and before 3 s , the step size (x) is between 0.001 and 0.999 . Since $3 d$ fills after 4 s and before 4 p , the step size is between 0.501 and 0.999 . Since 4 f fills between 6 s and 5 d , the step size is between 0.667 and 0.999 . If the step size is less than 0.750 , the 5 g will fill before the 8 s . If the step size is greater than 0.750 the 5 g will fill after the 8 s . Had the 5 g filled before the 7 p , the step size would have been less than 0.666 which is not the case due to the 4 f data point.

From secondary evidence, a step size (x) of 0.707 (the square root of 0.5) looks right. With energy falling as the square of distance from the nucleus, this gives an even pattern. The top of the orbits is now: $1.00,2.00,2.71,3.00,3.71,4.00,4.41,4.71,5.00,5.41$, $5.71,6.00,6.12,6.41,6.71,7.00,7.12,7.41,7.71,7.83,8.00, \ldots$

It should be possible to find the exact step-size by analyzing the kinetic energy of the Hydrogen 1 atom with sufficient precision. A 1s electron has 13.598517 eV in Kinetic Energy (with the proton having 0.007406 eV). An 8 s electron has $1 / 64^{\text {th }}$ as much: 0.212 477 eV . The Kinetic energy of the 5 g electron varies based on distance, with an average around 0.544 eV . The maximum energy (at the lowest point of the orbit) is around 2.9
eV , and the minimum energy (at the highest point of the orbit) is around 0.2 eV . If Kepler's law was exact, the mean energy would give an exact solution, but the relativistic effects (especially near the low point) make the calculation non-trivial. At the low point the effective mass is 0.0005% higher than at the high point, causing the velocity to be slightly lower than Kepler would have predicted. From the relativistic effects, the mean kinetic energy of the eccentric cases is very slightly higher than the spherical cases. The largest difference would occur in the 2 p case (estimated to be about . 0015% difference: 3.39968 vs 3.39963 eV), which should be examined with particular care. The easiest measurement would be the drop from each to the 1 s case, 50 micro eV of 10.2 eV , which is normally within the uncertainty of measurements.

If ununennium has a 5 g electron, the next 17 elements would fill the 5 g sub-shell (with an 8s electron added temporarily after 95 g electrons, due to the stability of a half-full subshell - similar to the configuration of Gadolinium). This would give 18 noble elements at the end of the periodic table (plus 2 alkalis: element 128 and 137). Dirac's limit sets a ceiling to atomic number around 137, so no additional configurations would occur. Boiling point on the final 20 elements is rather high for a noble gas (and the melting point of the alkalis is rather low), with at least some liquids at room temperature.

