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Abstract 

This is a description of an alternate to the standard models of nuclear structure, with a 

crystalline structure of diquarks and monoquarks.  Nuclei were found to follow a least 

surface function, modified by minimizing the dipole on the nucleus.   It assumes a structure 

to the quarks based on a theory of gravitons as low-energy tachyons, with a photon-like 

shell surrounding each charged structure, and each monoquark containing a proto-quark in a 

spherical orbit just above a pair of gravitons also in spherical orbits, with the diquark being 

a proto-diquark above 2 gravitons.  Other fundamental particles (photons and leptons) are 

also proto-matter above gravitons. 

This theory provides a diameter of the proton of 1.60(1) fm, and minimum base frequency 

of the graviton of 4.148 x 10
42

 cycles per second.  A brief analysis of the energy and size of 

some other nuclei are also included.  There are illustrations of many nuclei, a table of links 

for best fit for baryon count of 1 to 310, and graphs comparing the solution space to known 

isotopes. 



 

Primary Structure 

Since the atom was determined to be comprised of a nucleus surrounded by orbiting 

electrons late in the 19
th

 century, many attempts have been made to describe the nucleus.  

Most have involved structures of baryons, either orbiting or crystalline. Some have involved 

quarks, again either orbiting or crystalline. This theory gives a crystalline structure of 

quarks and diquarks.  Unlike other theories it gives an octahedral surface to the structure, 

except for a few very small nuclei.  Again differently, it assumes Coulomb’s law holds for 

such a structure: producing a charged surface with ups, diquarks, and a few downs, plus a 

neutral interior comprised of downs and diquarks. 

The consensus opinion has the proton comprised of a down quark and 2 ups quarks, while 

the neutron is comprised of an up quark and 2 down quarks.  A minority view has the proton 

comprised of an up/down diquark and an up quark, with the neutron comprised of an 

up/down diquark and a down. Lichtenburg
1
 proposed that solution around 1968, possibly 

first. 

Extending this picture, a deuteron (the nucleus of Hydrogen 2) is comprised of 2 up/down 

diquarks a down quark and an up quark.  One arrangement of this is a 1x2x2 square of 

spheres: .  Combining 2 such squares, a cube of spheres can be produced: . Now each 

of the 4 diquarks is bound to 3 monoquarks (some up, some down), and each monoquark is 

bound to 3 diquarks. 

The cube of Helium 4’s nucleus (also called the alpha particle) can be expanded in various 

ways.  A deuteron can be slapped on each of the 6 faces, producing a 32 sphere octahedra 

 (O-16).  A line of deuterons can be repeatedly slapped on a single face producing a 

columnar structure (Li-6)  (Be-8). Another cube can be attached sharing 2 spheres 

of the first  (Li-7), with further cubes attached outward on the plane  (B-10)  

(C-13).  Another cube can be attached sharing 1 sphere of the first, with further cubes 

attached outward  (3 cubes: B-11).  And finally, spheres can be attached willy-nilly to 

the surface of the cube (as long as reflective symmetry is maintained) (2 spheres: He-5) 

 (6 spheres: Li-7). 

It is readily apparent that to study every possible nucleus built from this structure is not 

feasible.  However, some simplification is possible.  It can be shown that the ideal octahedra 

have the least surface for a given volume of any body-centered cubic structures.  This 



differs from the classical solution where a sphere has least surface of any solid, due to the 

definition of interior in the BCC case: having 6 neighbors.  Unfortunately, the only ideal 

octahedra (those with a single sphere as each of the 6 vertices) all have parity violations: 

they have a center sphere, and all other spheres in the structure have a partner opposite them 

in the structure, so the count of monoquarks and diquarks differs. These are the odd 

symmetric solutions:       .  The actual deviation from ideal is 

much higher than 1 extra suggests, more typically there is a 3:2 ratio of the dominant type 

(that present on the outer layer) to the subordinate type. 

Still, it is possible to work with nearly ideal octahedra.  The 32 sphere octahedra built from 

the alpha by expansion is nearly ideal.  It has 8 interior spheres, and no other structure with 

32 spheres has more than that (a few are tied).  The ideal octahedra would have 10 interior 

spheres.  Other near ideal octahedra can be built by expanding other small structures.  

Expanding the 32 sphere octahedra called the second even symmetric case  (O-16), with 

the cubic solution as the first even symmetric, by minimal expansion (only add a sphere to 

the surface where it is adjacent to a sphere of the original structure) produces another 

symmetric even solution, with 80 spheres, 48 of which are at the surface  (Ar or Ca-40).  

A fourth solution with 160 spheres, 80 at the surface can be generated  (Se or Kr-80).  

There is a fifth solution with 280 spheres and 120 surface  (Ce-140), then a sixth with 

448 (168 at the surface) (Po-224), and so forth  (Cn-336). 

Other simple structures can also build a series of octahedra.  The 1x2x2 deuteron can be 

extended minimally to produce a 20 sphere structure (16 spheres at the surface)  (B-10), 

which can be expanded to produce a 56 sphere structure (36 surface)  (Si-28), then a 

120 sphere structure (64 surface)  (Ni-60), a 220 sphere (100 surface)  (Pd-110), a 

364 sphere (144 surface)  (Hf-182), a 560 sphere (196 surface)  (Cf-280), etc.  

These are the odd near-symmetric solution set. 

The next structure produces an interesting dilemma. All the previous structures had similar 

charge distributions on the surface.  Assuming all the surface monoquarks are ups, we get 2 

hemispheres divided by any plane with the same charge on each. The 1x1x2 structure 



(proton)  can also be expanded producing a 12 sphere structure with 2 interior spheres, 

 (Li-6) then a 38 sphere structure with 12 interior.  (F-19) But in this case, the 26 

surface spheres of this solution have a dipole: all the monoquarks are in 1 hemisphere and 

all the diquarks are in the other.  This can be resolved for the 2
nd

 and 3
rd

 layer by having a 

third of the surface monoquarks as downs.  (And some of the monoquarks on the first 2 

solutions sets would also be downs, as long as they are divided symmetrically so as to 

minimize dipole there). By layer 4 of this solution, having a third of the surface monoquarks 

as downs produces an unusually low z value (17) for a baryon count of 44.  Layer 4  

(Cl-44) and subsequent (Ni-85),  (Nb-146),  (La-231) of this even near-

symmetric group of solutions are not valid.  These structures also have a chromatic dipole, 

that is, the center of the red quarks is separate from the center of the blue-green diquarks.  

For the symmetric cases and the odd-near symmetric the center of each structure for both 

types is identical, for the even near symmetric they are 1 diameter apart.  Some other 

solutions have even higher chromatic dipole.  The intensity of the chromatic dipole is the 

product of the distance between the 2 centers and the count of the spheres centered on them.  

Some derived solutions have a slight chromatic dipole (adding a single sphere each to a blue 

face and a red face makes a dipole). 

There are also families of solutions with positive eccentricities derived from the even 

symmetric, just as we have looked at 2 families with negative eccentricities.  A 2x2x3 

structure can be extended to form a set of near-symmetric solutions.  Similarly the 

2x2x4  or the 2x3x3 core  can be expanded. We can also have solutions with mixed 

eccentricities: 1x2x3 or 1x2x4  as a core.  Solutions with all dimensions more 

than 2 can be treated as cousins to those with all small dimensions, but the 3x4x4 and 4x4x4 

 cases were looked at separately.  Extensions to these were sometimes valid base cases. 

The solutions with stretching along a plane are herein called Skew, and like the eccentric 

solutions they provide numerous bases for families of structures.  Skew can exist in 1 , 

2 , or all 3  planes.  Each of these can be of any degree, so a S123  solution is 

possible.  Each of these generates a family of solutions.  However, only solutions with 

relatively small skew correspond to base state isotopes, so most can be ignored.  

Additionally, skew in a plane can be combined with eccentricity in the perpendicular 

dimension:  . These hybrid solutions turn out to have a parity violation if the degree of 

eccentricity is odd.  Stretching along a diagonal also often causes parity violation.  A pair of 



cubes sharing a single sphere represents 15 total spheres, so the count of diquarks and 

monoquarks can’t be the same.  3 cubes in a row is the minimum valid solution for such a 

diagonal.  Diagonals from trimming or extending a solution on 2 faces often exist as well. 

In addition to all these base cases and their families, the solutions with spheres added here 

and there have to be taken into account.  Fortunately, these routinely have more surface than 

the base structure from which they are derived.  However the derived solutions may be the 

least surface for a baryon count.  It was found that adding a triangle of spheres to a pair of 

faces made the best improvements, adding a minimum amount of surface for the maximum 

interior.  In some cases, for example the odd near symmetric, it is necessary to add to 4 or 8 

faces (to maintain reflective symmetry) since the face opposite is of the same type in those 

cases. 

Sadly, adding to 2 faces (or even 4 or 6) often increases dipole sharply.  If the base case has 

low dipole, this can bring the derived solutions to high dipole.  Adding to all 8 faces rapidly 

increases the surface.  For example: starting from the even symmetric case layer 5, the 

surface has 60 monoquarks and 60 diquarks symmetrically distributed (8 triangles of 15 

spheres).  Adding to any 2 faces reduces the symmetry, but typically maintains the same 

maximum z of 60 for low dipole.  (Adding a sextet to 2 faces gives 27 of the reduced type 

and 36 of the enhanced, maximum z=2*(36*1/3+27*2/3) using the more common type as 

diquarks which have a charge of 1/3, and the lesser as ups with a charge of 2/3 and adding a 

balancing charge in the monoquark dominated hemisphere. Adding a smaller amount 

slightly increases the maximum z, adding a larger amount slightly lowers maximum z.) 

Similarly adding to 4 faces maintains the 60 limit.  However if we add to 6 faces, the limit 

slowly rises (a third as fast as the increase in surface), and if we add to all 8 faces it goes up 

evenly with the increase in surface.  When the base case had moderate dipole, adding to 2 or 

4 faces can reduce dipole.   

Most of the skew families of solutions and some of the eccentric have moderate to high 

dipole for the base case.  This is not a problem with small nuclei, since some surface downs 

are needed to reach ideal z, but with large nuclei where the surface is all ups and diquarks, it 

is difficult to find a low dipole solution.  Since the octahedra are defined by 7 planes it is 

necessary to calculate the dipole from each (3 planes defined by the vertices, 4 defined by 

pairs of faces).  For high baryon count, many high-dipole solutions can be generated with 

less surface spheres than low dipole solution.  For example, a 259 baryon count with 92 

surface monoquarks can be generated from the even near-symmetric case, but it has a 

maximum z of 80.  Ideal z at that point is around 101, which is quite a shortfall. 



Unioning together all the plausible structures defined so far, an overall solution space can be 

generated.  This was visualized by graphing the normalized ratio of surface to interior of 

each solution point versus baryon count.  The base of the graph showed a jagged edge, with 

local minima at each complete structure surrounded by V’s of derived solutions, and a 

regional minima periodically corresponding to the odd-symmetric case and the even near-

symmetric case.  Indeed, the even solutions formed a recurring set of ridgelines of solutions, 

while the odd solutions formed a set of odd ridgelines.  Comparing this solution space 

against the known isotopes, it was found a simple mapping was possible.  Each stable 

isotope could be built from a valid solution (one with low dipole, good parity, and small 

surface) with a few surface downs.  The worst cases (starting with Calcium 46) each 

required 8 surface downs (2 per monoquark face of the octahedra).  

While it is possible to build a solution with least surface for large isotopes, solutions with 

more than least surface tend to be stabler.  This introduces a concept of “fluffiness”, the 

addition of spheres beyond the near-ideal octahedra to bring it closer to a sphere.  For 

example: 

 
Even Symmetric base case 

 
Extended by 8 spheres 

 
Extended by 8 hexagons of 7 spheres 

 

Each of these has the same basic shape: A near ideal octahedra with no eccentricity and no 

skew.  But the right 2 are closer to a sphere and correspond to known isotopes (Radium 228 

and Fermium 252), while the leftmost represents Polonium 224, which is 4 beyond the 

heaviest known isotope of Polonium.  Fluffy solutions often have lower moments of Inertia 

than solutions with least surface.  From this, and the known behavior of the existing stable 

isotopes, an ideal z function was roughed out.  This agreed pretty well with previous 

predictions of z to A mapping.  Based on the observed behavior of heavy isotopes, cases 

where z is 2 less than the ideal often produces more stable isotopes than the actual z.  So for 

example the ideal z at baryon count of 238 is 94 (where energy per baryon is lowest), but z 



of 92 is most stable.  This leads to some added jumpiness in the z:A mapping of relative 

stability. 

There are several measures of the central tendency typically observed.  The simplest, used 

as primary here, is the least surface.  Other measures include least maximum diameter, 

highest total bond count, and least moment of inertia.  In cases where 2 solutions have the 

same surface, and dipole is not a factor, the solution with the least maximum diameter 

would tend to be preferred.  This should equate to lowest moment of inertia, but in cases 

where it does not that would be a tie-breaker.  As an example, for small and medium nuclei, 

the even symmetric solutions (S000) and the thin skew 1 solutions (T001) each have the 

same surface. The symmetric has more dipole, but a little less maximum diameter.  In that 

region, the symmetric is superior.  For large nuclei, the zero dipole of the thin skew is most 

important, since there aren’t any surface downs to counteract the dipole of the symmetric. 

The Euclidean length of a nucleus can be calculated from the simpler Manhattan length.  

For the 4 simplest cases, the even symmetric, odd near-symmetric, even near-symmetric, 

and odd symmetric, the Manhattan length of all 4 pairs of faces is equal at a given layer.  A 

simple formula for each type was derived with mL the Manhattan length, and L the layer 

number.  For the even symmetric, mL=2L+1.  For the odd near-symmetric, mL=2L.  For the 

even near-symmetric, mL=2L-1.  For the odd symmetric mL=2L-2.   

From the Manhattan length, calculating the Euclidean length involves finding the 

combinations that add to the Manhattan length.  In the simplest case, the even symmetric, 

the individual lengths are odd integers.  Layer 1 is 1+1+1=3.  Layer 2 is 3+1+1=5.  Layer 3 

has either 5+1+1 or 3+3+1=7.  Layer 4 has 7+1+1 or 5+3+1 or 3+3+3=9.  Euclidean lengths 

are thus √(1
2
+1

2
+1

2
)= √3 for layer 1, etc..   

Symmetric cases with 3 different integers correspond to 6 spheres at a distance, those with 2 

different integers to 3 spheres at a distance, and cases with 3 identical integers have a single 

sphere at the distance.  For the near symmetric, with a mix of odd and even integers, 

solutions are either 1 sphere at a distance (if 2 components are equal), or 2 spheres at the 

distance (if all 3 components are different). 

More complicated formulas can be derived for the other families of solutions.  For instance 

the D-1 solutions have 2 faces at 2L+1 and the other 6 faces at 2L+3.  Although D-1 

solutions have such high chromatic dipole they can generally be ignored. Skew solutions 

can have 2, 3, or 4 sets of Manhattan lengths.  Eccentric and hybrid solutions with stripes 

(that is with wide edges) have a separate Manhattan length for each stripe, in addition to the 

lengths calculated for the various faces. 



See also the Size of Nuclei. 

 

Graphs 

Graphs were produced showing the relationship among least surface, ideal z, and the known 

isotopes.  The first graph of baryon count versus z uses a moderate least surface, where 

dipole can be removed with 4 or fewer surface downs.  The second and third graphs shows 

the difference between this least surface value (turquoise line at the center) and 1) the 

known isotopes (red for stable(ish), orange for moderately unstable, white for very 

unstable), 2) ideal z (blue diamonds), 3) amphoteric isotopes (those that can either gain or 

lose an electron to become stabler) as blue circles, 4) least surface ignoring dipole (pale 

yellow circles), and 5) least surface where no dipole exists (only possible for even baryon 

count and even z) as dark green circles.  Graph 2 covers baryon count 0 to 175 and graph 3 

covers 120 through 310.  The same ideal z was used on all 4 graphs, the jumpiness on 2 and 

3 are from the jumpiness in least surface.  Graph 4 shows Ideal z as the center line, covering 

A of 0 through 345. 
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Conclusion 

It is interesting to note that all stable isotopes under atomic weight 176 can be built from the 

least surface solution with moderate dipole.  A half-dozen stable and near stable isotopes 

from 176 through 238 use slightly more surface than the least, and no stable isotopes 

requires more than 2 extra ups beyond the least surface structure with moderate dipole.  It 

should be noted that curvature on the least surface flattens out leading up to the regional 

minima (see baryon counts of 80, 110, 140, 182, 224, 280), with the odd ridges (110, 182, 

280) bifurcating (surface sphere count on the even isotopes flattening out, odd not). 

In order to visualize these structures, software was used to produce 3-dimensional images, 

first in a lab at the school, then with Google Sketchups.  In between, physical models were 

built using chemical modeling kits.  Images from all 3 are available online. 

Below is a table of links to the Google Sketchups of the best fit solution found thus far.  As 

these were generated manually, some cases may not be actual best fit.  Each row has baryon 

count, and 3 solution cells: least surface ignoring dipole, least surface with dipole that can 

be corrected with 4 or fewer surface downs, and least surface with zero dipole.  Only even 

baryon counts have solutions in the final column.  The first solution cell may have many 

solutions with the same surface, from least dipole to most.  The second cell has only 1 

solution with the minimum dipole for the surface (or a few if there are ties).  In a few cases 

for large nuclei where the ideal z is above the least surface some example solutions that 

were pretty are included.  These are more likely to match actual isotopes than the least 

surface cases. The illustrations linked to all have red monoquarks.  All 3 possible color 

schemes    should be equally likely, red monoquarks and blue-green diquarks was 

chosen for aesthetic reasons. 

Since the point at which dipole is minimum depends on the particular structure, there are 

some cases where a trio of consecutive solutions based on 2 different structures are stable 

(or at least close).  Generally, the existence of dipole adds a wave function to the energy, 

with 2 low dipole solutions having a higher dipole solution in between (where a single 

surface down becomes an up, creating a disparity).  On a few occasions where the energy is 

relatively flat over a wide range of z values 3 stable cases z, z+2, and z+4 can all exist 

(A=124 for example).  In those cases ideal z is near the middle of the range.  The actual 

value of ideal z depends on the balance between the energy from mutual repulsion of the 

surface charges, and the lower “rest” energy of the ups on the surface.  



An additional constraint to nuclei size is Dirac’s limit.  Maximum z is less than 137, with a 

practical limit around 132.  Theoretic work was done on nuclei as large as 890 baryon 

count, but the heaviest practical within the limit is less than half that large.   

Several other effects also need to be taken into account.  Large nuclei have significant 

moment of Inertia.  This can be minimized by bringing the surface closer to the center of 

mass (making the structure more spherical).  However, this increases the surface sphere 

count.  Also, the number of bonds in an octahedral structure is less than the maximum 

possible.  A rectilinear structure has more bonds among the spheres, but again a larger 

surface.  Finally, an octahedral structure typically has more charge surfaces than a spherical 

structure (but less than a cubic structure).  For medium to large size nuclei it may be 

necessary to look at many alternatives to find an exact solution with low total surface, few 

charge surfaces, low moment of inertia, low dipole, and high bond count.  This analysis 

only looked at least surfaces and low dipole in any detail. 
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