An Alternate View of Nuclear Structure
Solutions Derived from S001L6
Aran David Stubbs
These are solution points derived from a primary solution linked above. These typically have some
dipole when all the surface monoquarks are ups, so a calculation is needed to find how many surface
monoquarks should become downs to minimize dipole. Dipole can occur in any of the 7 axises defined
for an octahedra, but only the x, y, z, and ++ axis are relevant (since there can only be significant
dipole on an axis perpendicular to 2 faces when the solution is diagonalized). The z axis is the long
axis in the base case, assigned arbitrarily when all 3 are the same length. X is the intermediate
length axis, and y is the shortest axis.
Derivations: x is the extended form (if any), s is a sphere, t a triangle (number following is the
number of spheres along an edge), h is a hexagon (h2 has 7 spheres, h3 12, h4 18, etc.). The number
preceding a symbol is the count of that symbol added. Additions are made so as to minimize the
addition to dipole. Dipole formula is the count of the dominant type in a hemisphere plus the
subordinate type if the axis is even in length, or dominant plus subordinate plus half the
equator length if the axis is odd. Maximum z occurs when the dominant type is treated as dipole
and the subordinate type as up monoquarks, total charge is twice the charge on the dipole
dominated hemisphere (rounded up to the nearest integer). Link (if any) connects to a
Sketchup of the solution.
A | Derivation | Surface | Dipole Formula |
Axis | Max Z |
Min SD |
Link |
263 | -18s | 97 | 49+48 | z | 97 | 0 | Link |
265 | -14s | 97 | 49+48 | z | 97 | 0 | Link |
267 | -10s | 97 | 49+48 | z | 97 | 0 | Link |
268 | -8s | 97 | 50+47 | z | 96 | 1 | Link |
269 | -6s | 97 | 51+46 | z | 96 | 1 | Link |
270 | -4s | 97 | 52+45 | z | 95 | 2 | Link |
271 | -2s | 97 | 53+44 | z | 94 | 3 | Link |
272 | ... | 97 | 54+43 | z | 94 | 3 | Link |
273 | x (+2s vertex) | 97 | 55+42 | z | 93 | 4 | Link |
273 | +2s face | 98 | 54+44 | z | 95 | 3 | |
274 | x+2s | 98 | 55+43 | z | 94 | 4 | |
275 | x+4s | 99 | 55+44 | z | 96 | 3 | Link |
275 | +2t2 | 99 | 55+44 | z | 96 | 3 | Link |
276 | x+2t2 | 99 | 54+45 | z | 96 | 3 | |
277 | x+2t2+2s | 100 | 54+46 | z | 98 | 2 | |
278 | x+2t2+4s | 101 | 54+47 | z | 99 | 2 | |
279 | x+2t3 | 100 | 51+42+14/2 | y | 97 | 3 | |
279 | x+4t2 | 101 | 53+48 | z | 100 | 1 | |
280 | x+2t3+2s | 101 | 51+43+14/2 | y | 99 | 2 | |
280 | x+2h2 | 101 | 52+42+14/2 | y | 98 | 3 | |
280 | x+4t2+2s | 102 | 53+49 | z | 101 | 1 | |
281 | x+2t4-4s | 101 | 53+41+14/2 | y | 97 | 4 | |
281 | x+2t3+4s | 102 | 51+44+14/2 | y | 100 | 2 | |
281 | x+2h2+2s | 102 | 52+43+14/2 | y | 99 | 3 | |
281 | x+4t2+4s | 103 | 53+50 | z | 102 | 1 | |
282 | x+2t4-2s | 101 | 54+40+14/2 | y | 97 | 4 | |
282 | x+2t3+2t2 | 102 | 50+45+14/2 | y | 101 | 1 | |
282 | x+(2t4-4s)+2s | 102 | 53+42+14/2 | y | 99 | 3 | |
282 | +4t3-4s | 103 | 52+51 | z | 103 | 0 | |
282 | x+2h2+4s | 103 | 52+44+14/2 | y | 101 | 2 | |
283 | x+2t4 | 101 | 55+39+14/2 | y | 96 | 5 | |
283 | x+(2t4-2s)+2s | 102 | 54+41+14/2 | y | 98 | 4 | |
283 | x+4t3-4s | 103 | 52+51 | z | 103 | 0 | |
283 | x+2t3+2t2+2s | 103 | 50+46+14/2 | y | 102 | 1 | |
283 | x+2h2+2t2 | 103 | 51+45+14/2 | y | 101 | 2 | |
283 | x+(2t4-4s)+4s | 103 | 53+43+14/2 | y | 100 | 3 | |
284 | x+2t4+2s | 102 | 55+40+14/2 | y | 97 | 5 | |
284 | +4t3 | 103 | 53+50 | z | 102 | 1 | |
284 | x+(2t4-4s)+2t2 | 103 | 52+44+14/2 | y | 101 | 2 | |
284 | x+(2t4-2s)+4s | 103 | 54+42+14/2 | y | 98 | 5 | |
284 | x+2h2+2t2+2s | 104 | 51+46+14/2 53+51 |
y z |
103 104 |
1 0 |
|
285 | x+2h3 | 102 | 57+38+14/2 | y | 96 | 6 | |
285 | x+4t3 | 103 | 54+49 | z | 102 | 1 | |
285 | x+(2t4-2s)+2t2 | 103 | 53+43+14/2 | y | 100 | 3 | |
285 | x+2t4+4s | 103 | 55+41+14/2 | y | 99 | 4 | |
285 | +4t3+2s | 104 | 53+51 | z | 104 | 0 | |
285 | x+2h2+(2t3-2s) | 104 | 50+47+14/2 54+50 |
y z |
103 | 1 | |
285 | x+(2t4-4s)+2t2+2s | 104 | 52+45+14/2 | y | 102 | 2 | |
286 | x+2h3+2s | 103 | 57+39+14/2 | y | 97 | 6 | |
286 | x+2t4+2t2 | 103 | 54+42+14/2 | y | 99 | 4 | |
286 | x+4t3+2s | 104 | 54+50 | z | 103 | 1 | |
286 | x+2h2+2t3 | 104 | 55+49 | z | 102 | 2 | |
286 | x+(2t4-4s)+(2t3-2s) | 104 | 51+46+14/2 55+49 |
y z |
102 | 2 | |
286 | x+(2t4-2s)+2t2+2s | 104 | 53+44+14/2 | y | 100 | 4 | |
286 | +4t3+4s | 105 | 53+52 | z | 105 | 0 | |
287 | x+(2t4-2s)+(2t3-2s) | 104 | 52+45+14/2 56+48 |
y z |
101 102 |
3 | |
287 | x+2h3+4s | 104 | 57+40+14/2 | y | 99 | 5 | |
287 | x+(2t4-4s)+2t3 | 104 | 56+48 | z | 102 | 2 | |
287 | x+2t4+2t2+2s | 104 | 54+43+14/2 56+48 |
y z |
101 102 |
3 2 |
|
287 | x+4t3+4s | 105 | 54+51 | z | 104 | 1 | |
287 | x+4h2 | 105 | 56+49 | z | 103 | 2 | |
288 | x+2h3+2t2 | 104 | 56+41+14/2 57+47 |
y z |
99 101 |
3 5 |
|
288 | x+(2t4-2s)+2t3 | 104 | 57+47 | z | 101 | 3 | |
288 | x+2t4+(2t3-2s) | 104 | 53+44+14/2 57+47 |
y z |
101 | 3 | |
288 | x+4t3+2t2 | 105 | 53+52 50+46+18/2 |
z x |
105 104 |
0 1 |
|
288 | x+(2t4-4s)+2t3+2s | 105 | 56+49 | z | 103 | 2 | |
288 | x+(2t4-4s)+2h2 | 105 | 57+48 | z | 102 | 3 | |
288 | x+4h2+2s | 106 | 56+50 | z | 104 | 2 | |
289 | x+2h3+2t2+2s | 105 | 56+42+14/2 58+47 |
y z |
101 102 |
4 3 |
|
289 | x+2t4+2t3 | 104 | 58+46 | z | 100 | 4 | |
289 | x+4t4-8s | 105 | 58+47 | z | 102 | 3 | |
289 | x+(2t4-2s)+2h2 | 105 | 58+47 | z | 102 | 3 | |
289 | x+(2t4-4s)+2h2+2s | 106 | 57+49 | z | 104 | 2 | |
289 | x+4t3+2t2+2s | 106 | 53+53 50+47+18/2 |
z x |
106 105 |
0 1 |
|
289 | x+4h2+4s | 107 | 56+51 | z | 106 | 1 | |
290 | x+2h3+(2t3-2s) | 105 | 55+43+14/2 59+46 |
y z |
101 | 4 | |
290 | x+4t4-6s | 105 | 59+46 | z | 101 | 4 | |
290 | x+2t4+2h2 | 105 | 59+46 | z | 101 | 4 | |
290 | x+(4t4-8s)+2s | 106 | 58+48 | z | 103 | 3 | |
290 | x+4t3+2t2+4s | 107 | 54+53 50+48+18/2 |
z x |
107 | 0 | |
290 | x+(2t4-4s)+2h2+4s | 107 | 57+50 | z | 105 | 2 | |
290 | x+4h2+2t2 | 107 | 55+52 51+47+18/2 |
z x |
106 | 1 | |
291 | x+4t4-4s | 105 | 60+45 | z | 100 | 5 | |
291 | x+2h3+2t3 | 105 | 54+44+14/2 60+45 |
y z |
102 100 |
3 5 |
|
291 | x+(4t4-6s)+2s | 106 | 59+47 | z | 102 | 4 | |
291 | x+4t3+4t2 | 107 | 55+52 | z | 106 | 1 | |
291 | x+(2t4-4s)+2h2+2t2 | 107 | 56+51 51+47+18/2 |
z x |
106 | 1 | |
291 | x+(4t4-8s)+4s | 107 | 58+49 | z | 104 | 3 | |
291 | x+4h2+2t2+2s | 108 | 54+54 51+48+18/2 |
z x |
108 107 |
0 1 |
|
292 | x+4t4-2s | 105 | 61+44 | z | 100 | 5 | |
292 | x+(4t4-4s)+2s | 106 | 60+46 | z | 102 | 4 | |
292 | x+2h3+2t3+2s | 106 | 54+45+14/2 61+45 |
y z |
103 101 |
3 5 |
|
292 | x+2h3+2h2 | 106 | 54+45+14/2 61+45 |
y z |
103 101 |
3 5 |
|
292 | x+(4t4-8s)+2t2 | 107 | 57+50 51+47+18/2 |
z x |
105 106 |
2 1 |
|
292 | x+(4t4-6s)+4s | 107 | 59+48 | z | 104 | 3 | |
292 | x+(2t4-4s)+2h2+2t2+2s | 108 | 56+52 51+48+18/2 |
z x |
107 | 1 | |
292 | x+4h2+(2t3-2s) | 108 | 54+54 53+46+18/2 |
z x |
108 106 |
0 2 |
|
292 | x+4h2+2t2+4s | 109 | 55+54 51+49+18/2 |
z x |
109 | 0 | |
293 | x+4t4 | 105 | 62+43 | z | 99 | 6 | |
293 | x+(4t4-2s)+2s | 106 | 61+45 | z | 101 | 5 | |
293 | x+2h3+(2t4-4s) | 106 | 53+46+14/2 62+44 |
y z |
104 100 |
2 6 |
|
293 | x+(4t4-6s)+2t2 | 107 | 58+49 51+47+18/2 |
z x |
104 106 |
3 1 |
|
293 | x+(4t4-4s)+4s | 107 | 60+47 | z | 103 | 4 | |
293 | x+4h2+2t3 | 108 | 55+53 54+45+18/2 |
z x |
108 105 |
0 3 |
|
293 | x+(4t4-8s)+2t2+2s | 108 | 57+51 51+48+18/2 |
z x |
106 107 |
2 1 |
|
293 | x+(2t4-4s)+2h2+(2t3-2s) | 108 | 55+53 53+46+18/2 |
z x |
108 106 |
0 2 |
|
293 | x+4h2+4t2 | 109 | 56+53 50+50+18/2 |
z x |
108 109 |
1 0 |
|
293 | x+(2t4-4s)+2h2+2t2+4s | 109 | 56+53 51+49+18/2 |
z x |
108 109 |
1 0 |
|
293 | x+4h2+(2t3-2s)+2s | 109 | 55+54 53+47+18/2 |
z x |
109 107 |
0 2 |
|
294 | x+4t4+2s | 106 | 62+44 | z | 100 | 6 | |
294 | x+2h3+(2t4-2s) | 106 | 52+47+14/2 63+43 |
y z |
105 100 |
1 6 |
|
294 | x+(4t4-4s)+2t2 | 107 | 59+48 51+47+18/2 |
z x |
104 106 |
3 1 |
|
294 | x+(4t4-2s)+4s | 107 | 61+46 | z | 102 | 5 | |
294 | x+(4t4-8s)+(2t3-2s) | 108 | 55+53 53+46+18/2 |
z x |
108 106 |
0 2 |
|
294 | x+(4t4-6s)+2t2+2s | 108 | 58+50 51+48+18/2 |
z x |
106 107 |
2 1 |
|
294 | x+(2t4-4s)+2h2+2t3 | 108 | 54+54 54+45+18/2 |
z x |
108 105 |
0 3 |
|
294 | x+4h2+2t3+2s | 109 | 56+53 54+46+18/2 |
z x |
108 107 |
1 2 |
|
294 | x+(4t4-8s)+2t2+4s | 109 | 57+52 51+49+18/2 |
z x |
108 109 |
1 0 |
|
294 | x+(2t4-4s)+2h2+4t2 | 109 | 55+54 52+50+14/2 50+50+18/2 |
z y x |
109 | 0 | |
294 | x+(2t4-4s)+2h2+(2t3-2s)+2s | 109 | 55+54 53+47+18/2 |
z x |
109 107 |
0 2 |
|
294 | x+4h2+(2t3-2s)+4s | 110 | 56+54 53+48+18/2 |
z x |
110 109 |
0 1 |
|
295 | x+2h3+2t4 | 106 | 51+48+14/2 64+42 |
y z |
105 99 |
1 7 |
|
295 | x+(4t4-2s)+2t2 | 107 | 60+47 51+47+18/2 |
z x |
103 106 |
4 1 |
|
295 | x+4t4+4s | 107 | 62+45 | z | 102 | 5 | |
295 | x+(4t4-4s)+2t2+2s | 108 | 59+49 51+48+18/2 |
z x |
105 107 |
3 1 |
|
295 | x+(4t4-8s)+2t3 | 108 | 54+54 54+45+18/2 |
z x |
108 105 |
0 3 |
|
295 | x+(2t4-4s)+2h2+2t3+2s | 109 | 55+54 54+46+18/2 |
z x |
109 107 |
0 2 |
|
295 | x+(4t4-8s)+4t2 | 109 | 56+53 50+50+18/2 |
z x |
108 109 |
1 0 |
|
295 | x+(4t4-6s)+2t2+4s | 109 | 58+51 51+49+18/2 |
z x |
107 109 |
2 0 |
|
295 | x+(4t4-8s)+(2t3-2s)+2s | 109 | 55+54 53+47+18/2 |
z x |
109 107 |
0 2 |
|
295 | x+4h2+(2t3-2s)+2t2 | 110 | 57+53 52+49+18/2 |
z x |
109 | 1 | |
295 | x+4h2+2t3+4s | 110 | 57+53 54+47+18/2 |
z x |
109 108 |
1 2 |
|
295 | x+(2t4-4s)+2h2+(2t3-2s)+4s | 110 | 55+55 52+49+18/2 |
z x |
110 109 |
0 1 |
|
296 | x+4t4+2t2 | 107 | 61+46 | z | 102 | 5 | |
296 | x+2h3+2t4+2s | 107 | 51+49+14/2 64+43 |
y z |
107 100 |
0 7 |
|
296 | x+(4t4-6s)+2t3 | 108 | 56+52 54+45+18/2 |
z x |
107 105 |
1 3 |
|
296 | x+(4t4-4s)+(2t3-2s) | 108 | 58+50 53+46+18/2 |
z x |
106 | 2 | |
296 | x+(4t4-2s)+2t2+2s | 108 | 60+48 51+48+18/2 |
z x |
104 107 |
4 1 |
|
296 | x+(4t4-6s)+4t2 | 109 | 57+52 50+50+18/2 |
z x |
108 109 |
1 0 |
|
296 | x+(4t4-6s)+(2t3-2s)+2s | 109 | 57+52 53+47+18/2 |
z x |
108 107 |
1 2 |
|
296 | x+(4t4-8s)+2t3+2s | 109 | 55+54 54+46+18/2 |
z x |
109 107 |
0 2 |
|
296 | x+(4t4-4s)+2t2+4s | 109 | 59+50 51+49+18/2 |
z x |
106 109 |
3 0 |
|
296 | x+(4t4-8s)+(2t3-2s)+4s | 110 | 55+55 52+49+18/2 |
z x |
110 109 |
0 1 |
|
296 | x+(2t4-4s)+2h2+(2t3-2s)+2t2 | 110 | 56+54 52+49+18/2 |
z x |
109 | 1 | |
297 | x+(4t4-8s)+(2t3-2s)+2t2 | 110 | 56+54 52+49+18/2 |
z x |
109 | 1 | |
296 | x+(2t4-4s)+2h2+2t3+4s | 110 | 56+54 54+47+18/2 |
z x |
110 108 |
0 2 |
|
296 | x+4h2+2t3+2t2 | 110 | 58+52 53+48+18/2 |
z x |
108 109 |
2 1 |
|
297 | x+4h3 | 107 | 66+41 | z | 99 | 8 | |
297 | x+(4t4-4s)+2t3 | 108 | 57+51 54+45+18/2 |
z x |
106 105 |
2 3 |
|
297 | x+(4t4-2s)+(2t3-2s) | 108 | 59+49 53+46+18/2 |
z x |
105 106 |
3 2 |
|
297 | x+4t4+2t2+2s | 108 | 61+47 | z | 104 | 4 | |
297 | x+2h3+2t4+4s | 108 | 51+50+14/2 64+44 |
y z |
108 102 |
0 6 |
|
297 | x+(4t4-4s)+4t2 | 109 | 58+51 50+50+18/2 |
z x |
107 109 |
2 0 |
|
297 | x+(4t4-4s)+(2t3-2s)+2s | 109 | 58+51 53+47+18/2 |
z x |
107 | 2 | |
297 | x+(4t4-6s)+2t3+2s | 109 | 56+53 54+46+18/2 |
z x |
108 107 |
1 2 |
|
297 | x+(4t4-2s)+2t2+4s | 109 | 60+49 51+49+18/2 |
z x |
106 109 |
3 0 |
|
297 | x+(4t4-6s)+(2t3-2s)+2t2 | 110 | 56+54 52+49+18/2 |
z x |
110 109 |
0 1 |
|
297 | x+(4t4-6s)+(2t3-2s)+4s | 110 | 57+53 53+48+18/2 |
z x |
109 | 1 | |
297 | x+(2t4-4s)+2h2+2t3+2t2 | 110 | 57+53 53+48+18/2 |
z x |
109 | 1 | |
297 | x+(4t4-8s)+2t3+4s | 110 | 56+54 54+47+18/2 |
z x |
110 108 |
0 2 |
|
297 | x+4h2+4t3-4s | 111 | 59+52 51+51+18/2 |
z x |
109 111 |
2 0 |
|
298 | x+2t5-4s+2h3 | 107 | 67+40 | z | 98 | 9 | |
298 | x+(4t4-2s)+2t3 | 108 | 58+50 54+45+18/2 |
z x |
106 105 |
2 3 |
|
298 | x+4t4+(2t3-2s) | 108 | 60+48 53+46+18/2 |
z x |
104 106 |
4 2 |
|
298 | x+(4t4-4s)+2t3+2s | 109 | 57+52 54+46+18/2 |
z x |
108 107 |
1 2 |
|
298 | x+(4t4-2s)+4t2 | 109 | 59+50 50+50+18/2 |
z x |
106 109 |
3 0 |
|
298 | x+(4t4-2s)+(2t3-2s)+2s | 109 | 59+50 53+47+18/2 |
z x |
106 107 |
1 2 |
|
298 | x+4t4+2t2+4s | 109 | 61+48 | z | 105 | 4 | |
298 | x+(4t4-8s)+2t3+2t2 | 110 | 57+53 53+48+18/2 |
z x |
109 | 1 | |
298 | x+(4t4-4s)+(2t3-2s)+4s | 110 | 58+52 53+48+18/2 |
z x |
108 109 |
2 1 |
|
298 | x+(4t4-6s)+2t3+4s | 110 | 56+54 54+47+18/2 |
z x |
110 108 |
0 2 |
|
298 | x+(2t4-4s)+2h2+4t3-4s | 111 | 58+53 51+51+18/2 |
z x |
110 111 |
1 0 |
|
298 | x+4h2+4t3-2s | 111 | 60+51 | z | 108 | 3 | |
299 | x+4t5-8s | 107 | 68+39 | z | 98 | 9 | |
299 | x+4t4+2t3 | 108 | 59+49 54+45+18/2 |
z x |
105 | 3 | |
299 | x+(4t4-2s)+2t3+2s | 109 | 58+51 54+46+18/2 |
z x |
107 | 2 | |
299 | x+4t4+4t2 | 109 | 60+49 | z | 106 | 3 | |
299 | x+4t4+(2t3-2s)+2s | 109 | 60+49 53+47+18/2 |
z x |
106 107 |
3 2 |
|
299 | x+(4t4-4s)+(2t3-2s)+2t2 | 110 | 57+53 52+49+18/2 |
z x |
109 | 1 | |
299 | x+(4t4-6s)+2t3+2t2 | 110 | 55+55 53+48+18/2 |
z x |
110 109 |
0 1 |
|
299 | x+(4t4-4s)+2t3+4s | 110 | 57+53 54+47+18/2 |
z x |
109 108 |
1 2 |
|
299 | x+(4t4-2s)+(2t3-2s)+4s | 110 | 59+51 53+48+18/2 |
z x |
108 109 |
2 1 |
|
299 | x+(4t4-8s)+4t3-4s | 111 | 57+54 | z | 110 | 1 | |
299 | x+(2t4-4s)+2h2+4t3-2s | 111 | 59+52 | z | 109 | 2 | |
299 | x+4h2+4t3 | 111 | 61+50 | z | 108 | 3 | |
300 | x+4t5-6s | 107 | 69+38 | z | 97 | 10 | |
300 | x+4t4+2t3+2s | 109 | 59+50 54+46+18/2 |
z x |
106 107 |
3 2 |
|
300 | x+(4t4-4s)+2t3+2t2 | 110 | 56+54 53+48+18/2 |
z x |
110 109 |
0 1 |
|
300 | x+(4t4-2s)+(2t3-2s)+2t2 | 110 | 58+52 52+49+18/2 |
z x |
108 109 |
2 1 |
|
300 | x+(4t4-2s)+2t3+4s | 110 | 58+52 54+47+18/2 |
z x |
108 | 2 | |
300 | x+4t4+(2t3-2s)+4s | 110 | 60+50 53+48+18/2 |
z x |
107 109 |
3 1 |
|
300 | x+(4t4-6s)+4t3-4s | 111 | 56+55 | z | 111 | 0 | |
300 | x+(4t4-8s)+4t3-2s | 111 | 58+53 | z | 110 | 1 | |
300 | x+(2t4-4s)+2h2+4t3 | 111 | 60+51 | z | 108 | 3 | |
301 | x+4t5-4s | 107 | 70+37 | z | 96 | 11 | |
301 | x+(4t4-2s)+2t3+2t2 | 110 | 57+53 53+48+18/2 |
z x |
109 | 1 | |
301 | x+4t4+2t3+4s | 110 | 59+51 54+47+18/2 |
z x |
108 | 2 | |
301 | x+4t4+(2t3-2s)+2t2 | 110 | 59+51 52+49+18/2 |
z x |
108 109 |
2 1 |
|
301 | x+(4t4-4s)+4t3-4s | 111 | 56+55 | z | 111 | 0 | |
301 | x+(4t4-6s)+4t3-2s | 111 | 57+54 | z | 110 | 1 | |
301 | x+(4t4-8s)+4t3 | 111 | 59+52 | z x |
109 | 2 | |
302 | x+4t5-2s | 107 | 71+36 | z | 96 | 11 | |
302 | x+4t4+2t3+2t2 | 110 | 58+52 53+48+18/2 |
z x |
108 109 |
2 1 |
|
302 | x+(4t4-4s)+4t3-2s | 111 | 56+55 | z | 111 | 0 | |
302 | x+(4t4-2s)+4t3-4s | 111 | 57+54 | z | 110 | 1 | |
302 | x+(4t4-6s)+4t3 | 111 | 58+53 | z | 110 | 1 | |
303 | x+4t5 | 107 | 72+35 | z | 95 | 12 | |
303 | x+(4t4-2s)+4t3-2s | 111 | 56+55 | z | 111 | 0 | |
303 | x+(4t4-4s)+4t3 | 111 | 57+54 | z | 110 | 1 | |
303 | x+4t4+4t3-4s | 111 | 58+53 | z | 110 | 1 | |
304 | x+(4t4-2s)+4t3 | 111 | 56+55 | z | 111 | 0 | |
304 | x+4t4+4t3-2s | 111 | 57+54 | z | 110 | 1 | |
305 | x+4t4+4t3 | 111 | 56+55 | z | 111 | 0 |