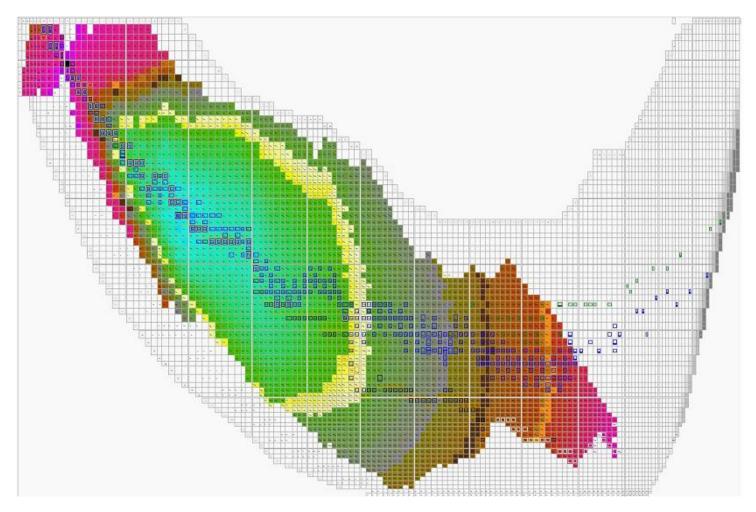
An Alternative view of Nuclear Energy

Aran David Stubbs

While it has been a long-standing convention to calculate the energy of isotopes based on how much energy would be released by merging n neutrons and z protons to form the atom, this does not jibe with the actual initial conditions. The early universe had a large quantity of hydrogen gas, which is basically a proton and an electron, and trivial amounts of other nuclei which contained neutrons.

A better alternative is to determine the energy content of the nuclei as a group of baryons and find the energy per baryon. An immediate problem arises due to lack of accurate data about nuclear mass. A large quantity of data has been generated about atomic mass – and almost all the isotopes have such data – but that includes the masking values of electrons orbiting the nucleus.

A method of getting around this is to estimate the energy content of the electrons and subtract that from the total energy content of the atom. For the small isotopes that can be done. However the total energy content of the electrons in large isotopes is not readily available. Since the total energy content of the electrons is primarily the rest mass of the electrons, a reasonable approximation can be done by assuming some value for the kinetic energy of the electrons.


The simplest method is to use a reasonable model of electron energy and test against known values. In this case the Bohr model is sufficient. Kinetic energy of the inner electrons of the heaviest known elements is less than half the mass equivalent. Using a simple formula, a reasonable approximation can be generated: the energy of electrons in shell n each have 13.606 eV $(z-(e) + (z-(e) + (z-(e))))^2$.

The results from this method differ at the margin from results generated using the conventional method. In this case Iron-56 is the lowest energy nuclei, easily beating Nickel 62. In general, those with a low neutron fraction improved their ranking, while those with a high neutron fraction dropped. The lowest energy nuclei (those with less than 930.25 MeV per baryon) are shown below.

(Note – first set of columns is alphabetic by element name, second set is numeric by baryon count, third set is by energy per baryon. Each relevant isotope occurs in all 3 sets.)

Chromium	50	930.24312	Titanium	48	930.24929	Iron	56	930.17407
Chromium	51	930.24433	Titanium	50	930.24030	Nickel	60	930.18050
Chromium	52	930.19205	Chromium	50	930.24312	Nickel	62	930.18620
Chromium	53	930.21911	Vanadium	51	930.23963	Chromium	52	930.19205
Chromium	54	930.21220	Chromium	51	930.24433	Iron	58	930.19289
Cobalt	56	930.24643	Chromium	52	930.19205	Iron	57	930.20468
Cobalt	57	930.21034	Chromium	53	930.21911	Cobalt	59	930.20497
Cobalt	58	930.22382	Manganese	53	930.22069	Iron	54	930.20579
Cobalt	59	930.20497	Iron	54	930.20579	Nickel	61	930.20615
Cobalt	60	930.23611	Chromium	54	930.21220	Iron	55	930.20690
Cobalt	61	930.23625	Manganese	54	930.22820	Nickel	58	930.20839
Copper	61	930.23441	Iron	55	930.20690	Cobalt	57	930.21034
Copper	62	930.24160	Manganese	55	930.21203	Manganese	55	930.21203
Copper	63	930.21732	Iron	56	930.17407	Chromium	54	930.21220
Copper	64	930.23970	Cobalt	56	930.24643	Nickel	59	930.21445
Copper	65	930.23069	Manganese	56	930.24923	Zinc	66	930.21727
Iron	54	930.20579	Iron	57	930.20468	Copper	63	930.21732
Iron	55	930.20690	Cobalt	57	930.21034	Chromium	53	930.21911
Iron	56	930.17407	Iron	58	930.19289	Manganese	53	930.22069
Iron	57	930.20468	Nickel	58	930.20839	Nickel	64	930.22155
Iron	58	930.19289	Cobalt	58	930.22382	Zinc	64	930.22262
Iron	59	930.24020	Cobalt	59	930.20497	Cobalt	58	930.22382
Iron	60	930.24863	Nickel	59	930.21445	Nickel	63	930.22654
Manganese	53	930.22069	Iron	59	930.24020	Manganese	54	930.22820
Manganese	54	930.22820	Nickel	60	930.18050	Copper	65	930.23069
Manganese	55	930.21203	Cobalt	60	930.23611	Copper	61	930.23441
Manganese	56	930.24923	Iron	60	930.24863	Cobalt	60	930.23611
Nickel	58	930.20839	Nickel	61	930.20615	Cobalt	61	930.23625
Nickel	59	930.21445	Copper	61	930.23441	Zinc	68	930.23853
Nickel	60	930.18050	Cobalt	61	930.23625	Vanadium	51	930.23963
Nickel	61	930.20615	Nickel	62	930.18620	Copper	64	930.23970
Nickel	62	930.18620	Copper	62	930.24160	Iron	59	930.24020
Nickel	63	930.22654	Copper	63	930.21732	Titanium	50	930.24030
Nickel	64	930.22155	Nickel	63	930.22654	Copper	62	930.24160
Titanium	48	930.24929	Nickel	64	930.22155	Chromium	50	930.24312
Titanium	50	930.24030	Zinc	64	930.22262	Zinc	65	930.24359
Vanadium	51	930.23963	Copper	64	930.23970	Chromium	51	930.24433
Zinc	64	930.22262	Copper	65	930.23069	Cobalt	56	930.24643
Zinc	65	930.24359	Zinc	65	930.24359	Iron	60	930.24863
Zinc	66	930.21727	Zinc	66	930.21727	Manganese	56	930.24923
Zinc	68	930.23853	Zinc	68	930.23853	Titanium	48	930.24929

This energy mapping does have some drawbacks. In many cases capturing an electron increases the stability of the resulting nucleus while also increasing the energy per baryon, for example Iron 55 versus Manganese 55 (which is still less than a third the mismatch of the standard form). On the plus side, it provides insight into the relative long life of the heavier isotopes. Uranium 238 only has 931.493 MeV per baryon, far less than the 931.845 of Helium 4. A complete table is available <u>online</u> giving energy for the 3200 known isotopes. This is in n-2z (y-axis) by a/3, a useful form for such data. Lowest energy for a baryon count is outlined in blue. The 2 lowest ratios for an element are outlined in black (for even N) and then orange (odd N).

Here is a comparison between this form of the data and the binding energy per baryon classically. Sum approximates the weighted average of protons and neutrons the classic would use if the electrons effect were taken into account. It tracks closely to the ratio of neutrons to protons, with rising z a secondary effect.

Element	Weight	Energy/	Classic	Sum	N/Z
	_	Baryon	Energy		
Helium	4	931.84473	7.073915	938.91864	1.000
Nickel	58	930.20839	8.732038	938.94043	1.071
Cobalt	56	930.24643	8.694824	938.94125	1.074

Iron	54	930.20579	8.736343	938.94213	1.077
Chromium	50	930.24312	8.700981	938.94410	1.083
Copper	61	930.23441	8.715505	938.94992	1.103
Nickel	59	930.21445	8.736568	938.95102	1.107
Cobalt	57	930.21034	8.741856	938.95220	1.111
Iron	55	930.20690	8.746559	938.95346	1.115
Manganese	53	930.22069	8.734132	938.95482	1.120
Chromium	51	930.24433	8.711955	938.95628	1.125
Zinc	64	930.22262	8.735897	938.95852	1.123
Copper	62	930.24160	8.718074	938.95967	1.138
Nickel	60	930.18050	8.780754	938.96125	1.130
Cobalt	58	930.22382	8.738944	938.96276	1.148
Iron	56	930.17407	8.790322	938.96439	1.154
Manganese	54	930.22820	8.737922	938.96612	1.160
Chromium	52	930.19205	8.775944	938.96799	1.167
Zinc	65	930.24359	8.724257	938.96785	1.167
Copper	63	930.21732	8.752131	938.96945	1.172
Nickel	61	930.20615	8.765006	938.96998	1.179
Titanium	48	930.24929	8.722905	938.97220	1.182
Cobalt	59	930.20497	8.768010	938.97298	1.185
Iron	57	930.20468	8.770248	938.97493	1.192
Manganese	55	930.21203	8.764988	938.97702	1.200
Zinc	66	930.21727	8.759631	938.97690	1.200
Copper	64	930.23970	8.739067	938.97877	1.207
Chromium	53	930.21911	8.760155	938.97926	1.208
Nickel	62	930.18620	8.794546	938.98075	1.214
Vanadium	51	930.23963	8.742051	938.98168	1.217
Cobalt	60	930.23611	8.746742	938.98285	1.222
Iron	58	930.19289	8.792220	938.98511	1.231
Manganese	56	930.24923	8.738299	938.98753	1.240
Copper	65	930.23069	8.757094	938.98778	1.241
Chromium	54	930.21220	8.777913	938.99011	1.250
Nickel	63	930.22654	8.763486	938.99003	1.250
Cobalt	61	930.23625	8.756149	938.99240	1.259
Zinc	68	930.23853	8.755677	938.99421	1.267
Iron	59	930.24020	8.754742	938.99494	1.269
Titanium	50	930.24030	8.755621	938.99592	1.273
Nickel	64	930.22155	8.777461	938.99901	1.286
Iron	60	930.24863	8.755836	939.00447	1.308
Uranium	238	931.49291	7.570120	939.06303	1.587