An Alternative view of Nuclear Energy

Aran David Stubbs

While it has been a long-standing convention to calculate the energy of isotopes based on how much energy would be released by merging n neutrons and z protons to form the atom, this does not jibe with the actual initial conditions.  The early universe had a large quantity of hydrogen gas, which is basically a proton and an electron, and trivial amounts of other nuclei which contained neutrons.

A better alternative is to determine the energy content of the nuclei as a group of baryons and find the energy per baryon.  An immediate problem arises due to lack of accurate data about nuclear mass.  A large quantity of data has been generated about atomic mass – and almost all the isotopes have such data – but that includes the masking values of electrons orbiting the nucleus.

A method of getting around this is to estimate the energy content of the electrons and subtract that from the total energy content of the atom.  For the small isotopes that can be done.  However the total energy content of the electrons in large isotopes is not readily available.  Since the total energy content of the electrons is primarily the rest mass of the electrons, a reasonable approximation can be done by assuming some value for the kinetic energy of the electrons.

The simplest method is to use a reasonable model of electron energy and test against known values.  In this case the Bohr model is sufficient.  Kinetic energy of the inner electrons of the heaviest known elements is less than half the mass equivalent.  Using a simple formula, a reasonable approximation can be generated: the energy of electrons in shell n each have 13.606 eV *(z-(electrons in shells <n)-(half the electrons in shell n))2.

The results from this method differ at the margin from results generated using the conventional method.  In this case Iron-56 is the lowest energy nuclei, easily beating Nickel 62. In general, those with a low neutron fraction improved their ranking, while those with a high neutron fraction dropped.  The lowest energy nuclei (those with less than 930.25 MeV per baryon) are shown below.

(Note – first set of columns is alphabetic by element name, second set is numeric by baryon count, third set is by energy per baryon. Each relevant isotope occurs in all 3 sets.)


 

 

Chromium

50

930.24312

 

Titanium

48

930.24929

 

Iron

56

930.17407

Chromium

51

930.24433

 

Titanium

50

930.24030

 

Nickel

60

930.18050

Chromium

52

930.19205

 

Chromium

50

930.24312

 

Nickel

62

930.18620

Chromium

53

930.21911

 

Vanadium

51

930.23963

 

Chromium

52

930.19205

Chromium

54

930.21220

 

Chromium

51

930.24433

 

Iron

58

930.19289

Cobalt

56

930.24643

 

Chromium

52

930.19205

 

Iron

57

930.20468

Cobalt

57

930.21034

 

Chromium

53

930.21911

 

Cobalt

59

930.20497

Cobalt

58

930.22382

 

Manganese

53

930.22069

 

Iron

54

930.20579

Cobalt

59

930.20497

 

Iron

54

930.20579

 

Nickel

61

930.20615

Cobalt

60

930.23611

 

Chromium

54

930.21220

 

Iron

55

930.20690

Cobalt

61

930.23625

 

Manganese

54

930.22820

 

Nickel

58

930.20839

Copper

61

930.23441

 

Iron

55

930.20690

 

Cobalt

57

930.21034

Copper

62

930.24160

 

Manganese

55

930.21203

 

Manganese

55

930.21203

Copper

63

930.21732

 

Iron

56

930.17407

 

Chromium

54

930.21220

Copper

64

930.23970

 

Cobalt

56

930.24643

 

Nickel

59

930.21445

Copper

65

930.23069

 

Manganese

56

930.24923

 

Zinc

66

930.21727

Iron

54

930.20579

 

Iron

57

930.20468

 

Copper

63

930.21732

Iron

55

930.20690

 

Cobalt

57

930.21034

 

Chromium

53

930.21911

Iron

56

930.17407

 

Iron

58

930.19289

 

Manganese

53

930.22069

Iron

57

930.20468

 

Nickel

58

930.20839

 

Nickel

64

930.22155

Iron

58

930.19289

 

Cobalt

58

930.22382

 

Zinc

64

930.22262

Iron

59

930.24020

 

Cobalt

59

930.20497

 

Cobalt

58

930.22382

Iron

60

930.24863

 

Nickel

59

930.21445

 

Nickel

63

930.22654

Manganese

53

930.22069

 

Iron

59

930.24020

 

Manganese

54

930.22820

Manganese

54

930.22820

 

Nickel

60

930.18050

 

Copper

65

930.23069

Manganese

55

930.21203

 

Cobalt

60

930.23611

 

Copper

61

930.23441

Manganese

56

930.24923

 

Iron

60

930.24863

 

Cobalt

60

930.23611

Nickel

58

930.20839

 

Nickel

61

930.20615

 

Cobalt

61

930.23625

Nickel

59

930.21445

 

Copper

61

930.23441

 

Zinc

68

930.23853

Nickel

60

930.18050

 

Cobalt

61

930.23625

 

Vanadium

51

930.23963

Nickel

61

930.20615

 

Nickel

62

930.18620

 

Copper

64

930.23970

Nickel

62

930.18620

 

Copper

62

930.24160

 

Iron

59

930.24020

Nickel

63

930.22654

 

Copper

63

930.21732

 

Titanium

50

930.24030

Nickel

64

930.22155

 

Nickel

63

930.22654

 

Copper

62

930.24160

Titanium

48

930.24929

 

Nickel

64

930.22155

 

Chromium

50

930.24312

Titanium

50

930.24030

 

Zinc

64

930.22262

 

Zinc

65

930.24359

Vanadium

51

930.23963

 

Copper

64

930.23970

 

Chromium

51

930.24433

Zinc

64

930.22262

 

Copper

65

930.23069

 

Cobalt

56

930.24643

Zinc

65

930.24359

 

Zinc

65

930.24359

 

Iron

60

930.24863

Zinc

66

930.21727

 

Zinc

66

930.21727

 

Manganese

56

930.24923

Zinc

68

930.23853

 

Zinc

68

930.23853

 

Titanium

48

930.24929

This energy mapping does have some drawbacks.  In many cases capturing an electron increases the stability of the resulting nucleus while also increasing the energy per baryon, for example Iron 55 versus Manganese 55 (which is still less than a third the mismatch of the standard form).  On the plus side, it provides insight into the relative long life of the heavier isotopes.  Uranium 238 only has 931.493 MeV per baryon, far less than the 931.845 of Helium 4.  A complete table is available online giving energy for the 3200 known isotopes. This is in n-2z (y-axis) by a/3, a useful form for such data. Lowest energy for a baryon count is outlined in blue.  The 2 lowest ratios for an element are outlined in black (for even N) and then orange (odd N).

Here is a comparison between this form of the data and the binding energy per baryon classically.  Sum approximates the weighted average of protons and neutrons the classic would use if the electrons effect were taken into account.  It tracks closely to the ratio of neutrons to protons, with rising z a secondary effect.

Element

Weight

Energy/ Baryon

Classic Energy

Sum

N/Z

Helium

4

931.84473

7.073915

938.91864

1.000

Nickel

58

930.20839

8.732038

938.94043

1.071

Cobalt

56

930.24643

8.694824

938.94125

1.074

Iron

54

930.20579

8.736343

938.94213

1.077

Chromium

50

930.24312

8.700981

938.94410

1.083

Copper

61

930.23441

8.715505

938.94992

1.103

Nickel

59

930.21445

8.736568

938.95102

1.107

Cobalt

57

930.21034

8.741856

938.95220

1.111

Iron

55

930.20690

8.746559

938.95346

1.115

Manganese

53

930.22069

8.734132

938.95482

1.120

Chromium

51

930.24433

8.711955

938.95628

1.125

Zinc

64

930.22262

8.735897

938.95852

1.133

Copper

62

930.24160

8.718074

938.95967

1.138

Nickel

60

930.18050

8.780754

938.96125

1.143

Cobalt

58

930.22382

8.738944

938.96276

1.148

Iron

56

930.17407

8.790322

938.96439

1.154

Manganese

54

930.22820

8.737922

938.96612

1.160

Chromium

52

930.19205

8.775944

938.96799

1.167

Zinc

65

930.24359

8.724257

938.96785

1.167

Copper

63

930.21732

8.752131

938.96945

1.172

Nickel

61

930.20615

8.765006

938.96998

1.179

Titanium

48

930.24929

8.722905

938.97220

1.182

Cobalt

59

930.20497

8.768010

938.97298

1.185

Iron

57

930.20468

8.770248

938.97493

1.192

Manganese

55

930.21203

8.764988

938.97702

1.200

Zinc

66

930.21727

8.759631

938.97690

1.200

Copper

64

930.23970

8.739067

938.97877

1.207

Chromium

53

930.21911

8.760155

938.97926

1.208

Nickel

62

930.18620

8.794546

938.98075

1.214

Vanadium

51

930.23963

8.742051

938.98168

1.217

Cobalt

60

930.23611

8.746742

938.98285

1.222

Iron

58

930.19289

8.792220

938.98511

1.231

Manganese

56

930.24923

8.738299

938.98753

1.240

Copper

65

930.23069

8.757094

938.98778

1.241

Chromium

54

930.21220

8.777913

938.99011

1.250

Nickel

63

930.22654

8.763486

938.99003

1.250

Cobalt

61

930.23625

8.756149

938.99240

1.259

Zinc

68

930.23853

8.755677

938.99421

1.267

Iron

59

930.24020

8.754742

938.99494

1.269

Titanium

50

930.24030

8.755621

938.99592

1.273

Nickel

64

930.22155

8.777461

938.99901

1.286

Iron

60

930.24863

8.755836

939.00447

1.308

Uranium

238

931.49291

7.570120

939.06303

1.587